
Encodings

We discussed earlier that a program is written in a specific language, which then gets
translated into a machine language of 0s and 1s. In a little more detail, this means that
everything that is in a program must have a way of being translated into 0s and 1s,
including letters, numbers, symbols, images, sounds, etc. If everyone decided on their
own way of doing this, it would be very difficult to transport programs from one machine
to another. So, there are standard ways of encoding data.

Exercise 1: Do a little research (find another book or look it up on the internet) and find
out what ASCII and Unicode are. How are they similar? How are they different?

Exercise 2: Find the ASCII values of the letters in your name.
My name is Pam, so I would type the following commands into a Code cell in Google
Colab:
 print(ord('P'))

print(ord('a'))
print(ord('m'))

This would give the following result when the Code cell is run:

80
97
109

Follow-up Analysis: What is ord? It is a built-in function in Python that returns the
ordinal (i.e., ASCII) value of a character. The print command tells the computer to
display the value that was returned from this function.

So we just found that ASCII and Unicode are the standards for encoding characters.
Let’s now turn our attention to encoding images.

To begin with, we represent an image as a grid of tiny pixels (image elements).

The following example shows an image with a portion greatly enlarged, in which the
individual pixels are rendered as little squares and can be easily seen.

.

Each pixel encodes color for that spot in the image. There are many encodings for color.
Printers use CMYK (Cyan, Magenta, Yellow, and blacK). Humans often prefer HSV
(Hue, Saturation, and Brightness). We will use the most common for computers: RGB
(Red, Green, and Blue).

The following example shows an image, say from a digital
camera, with a small section enlarged, in which the
individual pixels and their RGB values can be seen.

In RGB, each color has three component colors: the amount of red, the amount of green,
and the amount of blue. In a color image, each pixel is typically represented with three
bytes of storage, one for each of the red, green, and blue components. This gives us 24
bits of storage per pixel, and 16, 777,216 possible different colors.

Aside: RGB vs Paint
Paint is an applied medium, where the color
seen is the result of reflected light from the
“painted surface”. This is broken down into
the primary colors of red, blue, and yellow as
seen on printed material. A specific color can
be made by mixing different pigments. RGB
are the primary colors referring to projected
light and has no relationship to pigments of
paint nor the mixing of them.

A small image from a digital camera may have 1280 x 1024 = 1,310,70 pixels. This
would have 1,310,720 x 3 = 3,932,160 bytes of storage, which is about 4 MB.

Exercise 3: A pixel in a grayscale image (black and white) is typically represented with
one byte of storage. How many possible colors are there?

Exercise 4: What are the RGB values for white? What are the RGB values for black?

Images, Pixels, and Python

We said an image is represented as a grid of pixels. So, in Python, if we are going to
manipulate the colors in an image, we need to have a way to work with each pixel within
an image. The Python Imaging Library (PIL) provides the foundation for image
processing in Python. As part of PIL, the Image module provides a class to represent an
image. Images are represented with a Cartesian pixel coordinate system, with (0,0) in the
upper left corner. (Note that the coordinates refer to the implied pixel corners; the center
of a pixel addressed as (0, 0) actually lies at (0.5, 0.5).) The PIL library also stores values
for red, green, and blue with each pixel.

 The x- and y-values are similar to what you would see on a coordinate plane in math,
except that the position (0, 0) is at the top left corner, and then the x- and y-values get
larger as you go to the right and down, respectively.

 (0,0)

Aside: Bits and Bytes
A bit is a single 0 or 1. A byte is a sequence of 8 bits, such as 10010101 or
01011011. Each bit in a byte has 2 possibilities – either a 0 or a 1, so there are 2!
= 256 different values represented by a byte. A pixel uses 3 bytes of storage,
which allows 256 ∗ 256 ∗ 256 = 16,777,216 (or 2"#)		distinct colors.

Exercise 5: If an image had dimensions 640 x 480, what would the x- and y-values of the
pixel in top right corner be? The bottom left corner? The bottom right corner?

In a previous activity, we saw two different ways to show an image: 1) Just type the name
of the image and 2) use the show function on the image. There is another way to show
an image as a figure. By plotting the image, we are able to see the coordinate axis. The
following statements will import the plotting library, choose an image, and will show it
with an axis.

from matplotlib import pyplot as plt
myImage= Image.open("/drive/My Drive/ColabNotebooks/arch.jpg")
plt.imshow(myImage)

This code gives the following output:

<matplotlib.image.AxesImage at 0x7f19109c8160>

In PIL, there are several attributes (properties) and functions already defined to let us
work with images. To find the width and height of an image, we will use the width and
height attributes, respectively. To get a pixel from a particular image, we will use the
getpixel function. This function requires a tuple consisting of an x-value and a y-
value as its parameter and returns a tuple consisting of the three values for red, green, and
blue for that pixel.

Example: The following code segment demonstrates how to use the width and
height attributes, along with the getpixel function. Suppose that the chosen image
has dimensions 360 x 480.

myImage= Image.open("/drive/My Drive/ColabNotebooks/arch.jpg")
myImage.show()
w = myImage.width
h = myImage.height
print("width:",w)
print("height:", h)
px1 = myImage.getpixel((0,0))
px2 = myImage.getpixel((10, 15))
print("pixel1:", px1)
print("pixel2:", px2)

The output of this code block looks like the following:

width: 360
height: 480
pixel1: (214, 166, 130)
pixel2: (211, 165, 142)

Exercise 6: Describe which pixels the variables px1 and px2 are storing.

Exercise 7: How would we get the pixel in the middle of the image?

In the code segment of the previous example, we saw that the getpixel function
returns the red, green, and blue values of a pixel as a tuple. In order to get those
individual values from a pixel, we can use three variables, say, pxred, pxgreen, and
pxblue. In the following code segment, we get the RGB values from the pixel at (10,
15) and print them out.

pxred, pxgreen, pxblue = myImage.getpixel((10,15))
print('Red value', pxred)
print('Green value', pxgreen)
print('Blue value', pxblue)

Exercise 8: What are the minimum and maximum values of red, green, and blue that
getpixel that can return?

To set the color of a pixel, we will use the putpixel function. This function takes two
parameters. The first parameter is a tuple with the x- and y- coordinates, and the second
parameter is a tuple with the red, green, and blue values to set for the pixel.

Example: The following code sets the color of a pixel to purple:

myImage.putpixel((10,15),(255,0,255))
myImage.show()

Remember, pixels are very small, so it is sometimes hard to see that one pixel has
changed color. A zoomed in portion of the results from this code would give us
something like this:

Exercise 9: Write code to get a pixel from an image and turn it black.

Drawing on Images

The ImageDraw module from PIL provides a number of functions that will draw basic
lines and shapes on top of an image. Some of these include:

• line([x1, y1, x2, y2], fill, width)
• rectangle([x1, y1, x2, y2], fill, outline, width)
• ellipse([x1, y1, x2, y2], fill, outline, width)
• point([x1, y1, x2, y2, x3, y3, …], fill)
• text((x, y), string, fill)

How do these functions work? The line function takes 3 parameters – a tuple
containing the x- and y- coordinates of one end of the line and the x- and y- coordinates of
the other end of the line, the color you’d like the line to be, and the width of the line. It
will then draw the line between these two points on the specified image. It does not
return anything, but instead, modifies the original image.

The rectangle function takes 4 parameters – a tuple containing the x- and y-
coordinates of the upper left corner and the x- and y- coordinates of the lower right
corner, the (optional) color to fill in the rectangle, the (optional) color for the outline, and
the (optional) width of the outline. It then draws a rectangle with the top left corner and
the bottom right corner and colors as specified. If you want just the outline of the
rectangle you would not include a fill color. If you do not want an outline then you do
not include the outline parameter.

The ellipse function works similarly to the rectangle function. The x- and y-
coordinates are of the bounding box around the ellipse.

The point function takes a set of x- and y-coordinates and draws points of the specified
color at those coordinates.

The text function takes 3 parameters – the x- and y- coordinates to place the text, some
text, and a color. The text to be displayed must be specified within quotation marks. The
x- and y- coordinates specify the top left corner for the text string. The function will then
add the text to the specified image.

There are additional drawing functions also described in the ImageDraw module.

To draw on an image, we have two options – we can draw on an empty image (i.e., a
blank image), or we can draw on an existing image. To draw on a blank image, we must
first make a blank image by using the new function:

myImage = Image.new('RGB',(100,150))

This code would create an empty black image with dimensions 100 x 150. To get a blank
image of a different color, a third parameter, representing the RGB value to be applied to
all of the pixels, can be added to the new function, as in:

myImage = Image.new('RGB',(100,150),(75,100,150))

Example: The following code segment draws a line, an ellipse, and some text on a blank
image.

myImage = Image.new('RGB',(100,150))

d =ImageDraw.Draw(myImage)

d.text((50,50),"World",fill=(200,100,150))

d.ellipse([10,10,40,30],fill=(200,20,200),outline=(200,200,100),width=2)

d.line([35,85,10,60],fill=(200,150,100),width=3)

d.text((0,0),'Hello',fill=(200,200,200))

myImage.show()

The resulting image:

In the next activity, we will experiment with drawing on images and will practice calling
functions with different parameters.

Activity: Drawing Shapes on Images by Using Functions

