
Conditional Statements and Advanced Image Manipulation

In previous examples, we have started to see that we can use if-statements to help
us control how we make our color changes. We can continue with this idea by
replacing one color with another color. Whenever the color of a pixel is “close
enough” to the original color, we replace it. In a sense, we are looking at the
“distance” between colors of pixels. (See “Aside: Distance Function” on the next
page.)

We will use this to remove red-eye in a picture as well as to replace backgrounds.

Example: Remove red-eye

def removeRedEye(pic, startX, endX, startY, endY, newColor):

 newPic = pic.copy()

 for y in range(startY, endY):

 for x in range(startX, endX):

 if distance(newPic.getpixel((x,y)),(255,0,0)) < 165:

 newPic.putpixel((x,y),newColor)

 return newPic

With a little experimenting to find the correct x- and y- ranges for the eyes and an
appropriate new color to use, the removeRedEye function was called as follows:

pic = Image.open("/drive/MyDrive/ColabNotebooks/Picture1.jpg")

eye1 = removeRedEye(pic,127,147,134,148,(30,30,50))

eye2 = removeRedEye(eye1, 180,200, 140,152, (30,30,50))

 Original Picture Red-eye removed

Aside: Distance Function

 The distance function used to compare colors is similar to that seen in
mathematics. Recall that you can find the distance between two points in space by
using the following formula:

d = (x2 - x1)
2 + (y2 - y1)

2 + (z2 - z1)
2

.
To compute the distance between the colors of two pixels, the following formula is
used:

d = (r2 - r1)
2 + (g2 - g1)

2 + (b2 -b1)
2

,
where (r1, g1, b1) and (r2, g2, b2) are the RGB values of the two pixels.

We can also use the distance function to aid in replacing backgrounds. Suppose we
have a picture of someone and a picture of where they stood without them. Could
we subtract the background of the person and then replace another background?
We would have to figure out where the colors of the two pictures are exactly the
same (i.e., the backgrounds should have the same colors in the regions where the
person is not standing.)

In the following example, we have an image of 2 people on a bench, an image of just
a bench, and then the new background, some ivy. We’d like to get the 2 people
sitting in the ivy.

 Original BG only New BG

We can use the following function to attempt to do this:

Example: Swap backgrounds by subtraction

replace background around subject with new background

def swapBack(bgWithPerson, onlyBG, newBG, threshold):

 newPic = bgWithPerson.copy()

 for y in range(newPic.height):

 for x in range(newPic.width):

 pxcolor = newPic.getpixel((x,y))

 bgcolor = onlyBG.getpixel((x,y))

 if distance(pxcolor, bgcolor) < threshold:

 newPic.putpixel((x,y), newBG.getpixel((x,y)))

 return newPic

In this function, the parameter bgWithPerson is a picture with people in front of
some background, the parameter onlyBG is a picture of just that background, and
the parameter newBG is some new background, like the Eiffel Tower. When we
compare the colors of corresponding pixels in the bgWithPerson and the onlyBG
pictures, the difference between these colors should be very small, except where the
people are. So, we would check where that distance is small, and then replace the
color of those pixels with the color from the pixels in the new background.

 First try, threshold 25 Second try, threshold 40

In these results, we see that the first threshold of 25 seems to be too small to get
much of the ivy to show through. When increasing the threshold to 40, we get more
of the background to be replaced, but parts of the people are getting replaced as
well. There are various issues that cause this, including how the pictures were
taken, as well as slight changes in lighting and shadows between the pictures.

Television producers will sometimes use an effect called chromakey. This is very
common with weather forecasters. The idea is that the person will stand in front of
a solid color background (typically green or blue) and then the background will be
replaced with some other image, like a map or important building. In the following
example, we have two girls in front of a green screen, and then a picture of them on
campus. The green background then gets replaced with the campus picture.

 green-screen picture background picture

 Result of chromakey

The following function was used to produce this new image. Depending on the
actual shade of green in the green screen picture, the definition of green (i.e., the
condition in the if-statement) may need to be altered.

replace the green background with a more interesting

background

def chromakey(subjectOnGreen, bg):

 newpic = subjectOnGreen.copy()

 for y in range(newpic.height):

 for x in range(newpic.width):

 rvalue, gvalue, bvalue = newpic.getpixel((x,y))

 if rvalue < 200 and bvalue < 190 and gvalue > 150:

 newpic.putpixel((x,y), bg.getpixel((x,y)))

 return newpic

The condition in the if-statement could be further refined to remove the little bit of
green in the bottom left corner, if desired.

Activity: Color Replacements

