
Conditional	Statements	
	
In	previous	examples	and	exercises,	we	have	been	manipulating	images	by	using	
nested	for-loops	to	iterate	over	all	of	the	pixels	in	an	image,	or	we	have	modified	the	
ranges	of	the	loops	to	focus	on	just	one	portion	of	an	image.			Sometimes	we	would	
like	to	apply	a	change	to	all	of	the	pixels	in	an	image	that	have	some	particular	
property.			
	
Fortunately	for	us,	there	is	a	way	to	“pick	out”	the	pixels	that	we	want	to	change.		
We	will	use	an	if-statement	in	Python	to	allow	us	to	make	selections.		If-
statements	are	conditional	statements	–	if	some	given	condition	is	true,	we	execute	
the	block	of	code	that	follows.		The	general	syntax	is:	
	
	 if 		some condition	:	
		
where	some	condition	is	replaced	by	an	expression	that	has	a	true	or	false	value.	
This	could	be	an	expression	such	as		x < 100,	or	redValue > 255,	or	x + y
> 200.			The	block	of	code	that	would	follow	this	statement	is	whatever	you	want	to	
have	happen	when	the	condition	is	true.	
	
We	can	use	the	logical	operators	<,	<=,	>,	>=,	==,	!=,	and	<>	when	constructing	
expressions.		We	use	the	double	equals	to	test	for	equality.		(Remember,	the	single	
equal	symbol	is	used	for	assignment	of	values	to	variables.)		We	can	use	either	!=	or	
<>	to	test	non-equivalence.	
	
We	can	make	more	complicated	expressions	by	using	the	keywords	and	and	or	to	
combine	expressions,	such	as	in	the	expression:	
			

x > 100 and x < 200.	
	
Example	1:		Using	if-statements	to	draw	a	diagonal	line.	
To	draw	a	line	diagonally	from	the	upper	left	corner	to	the	bottom	right	corner	of	a	
square	image,	we	would	need	to	change	the	color	of	the	pixels	along	the	diagonal.		
These	are	the	pixels	(0,0),	(1,	1),	(2,	2),	…(w-1,	w-1).		Notice,	these	pixels	have	the	
same	x-	and	y-	values.		When	we	use	the	nested	loops	to	iterate	over	all	of	the	pixels	
in	the	image,	we	can	check	if	the	x-value	is	the	same	as	the	y-value	of	each	pixel.		
When	they	are	equal,	we	change	the	color	of	the	pixel.				The	code	to	do	this	is	shown	
below:	
	
	
Draw a diagonal from upper-left to lower-right
def drawDiagonal(picture):
 newPic = picture.copy()

 for y in range(newPic.height):
 for x in range(newPic.width):

 if x == y:
 newPic.putpixel((x, y), (255, 0, 0))
	
If	you	test	this	example	with	pictures	of	various	sizes,	you	will	find	that	the	pictures	
also	do	not	need	to	be	square.		In	the	case	of	non-square	images,	the	diagonal	is	not	
a	true	diagonal	from	the	top	left	corner	to	the	bottom	right	corner.	
	
We	can	look	at	several	other	examples	of	using	if-statements	to	make	more	
sophisticated	color	manipulations.	
	
Example:	TintRed	
	
def tintRed(picture):
 newPic = picture.copy()
 for y in range(newPic.height):
 for x in range(newPic.width):
 rvalue, gvalue, bvalue = newPic.getpixel((x,y))
 if (rvalue < 100):
 newR = int(rvalue * 2.5)
 newPic.putpixel((x,y), (newR, gvalue, bvalue))
 return newPic
			
Exercise:	What	does	this	function	do	to	a	picture?	
	
Next,	creating	sepia-tones	is	a	way	to	give	a	picture	an	old-fashioned	look,	with	a	
yellowish	tint.		The	picture	first	gets	converted	to	grayscale	(because	older	prints	
were	usually	in	grayscale,	and	they	are	easier	to	work	with),	and	then	we	look	for	
high	and	low	ranges	of	color	(luminance)	and	change	them	separately.		The	values	
used	in	this	example	can	be	tweaked	if	you’d	like	to	change	the	effect.	
	

	
	 							Original	image	 	 	 				Sepia-tinted	image	
	
	
The	function	to	create	this	effect	is	on	the	following	page.	
	

Example:	Creating	sepia-tinted	images	
	
def sepiaTint(picture):
 newPic = grayscale(picture)
 for y in range(newPic.height):
 for x in range(newPic.width):
 rvalue, gvalue, bvalue = newPic.getpixel((x,y))

 # tint shadows
 if (rvalue < 63):
 rvalue = int(rvalue * 1.1)
 bvalue = int(bvalue * 0.9)

 # tint midtones
 if (rvalue > 62 and rvalue < 192):
 rvalue = int(rvalue * 1.15)
 bvalue = int(bvalue * 0.85)

 # tint highlights
 if (rvalue > 191):
 rvalue = int(rvalue * 1.08)
 bvalue = int(bvalue * 0.93)

 # set the new color of the pixel
 newPic.putpixel((x,y), (rvalue, gvalue, bvalue))

 # return the new image
 return newPic
			
	
Notice	in	this	sepia-tint	example	that	there	are	three	sets	of	if-statements,	one	to	
modify	the	red	and	blue	values	for	each	of	the	different	ranges	of	red.	
	
There	are	times	when	we	may	want	to	do	an	alternative	action	if	our	condition	is	not	
true.		In	those	cases,	we	will	use	an	if-else	statement.	
	
As	an	example,	we	might	make	a	simple	posterized	effect.		Printed	posters	often	
have	a	limited	number	of	colors	that	can	be	used,	so	we	may	want	to	posterize	a	
picture	before	having	it	printed.		To	do	this,	we	look	for	specific	ranges	of	colors,	and	
then	set	the	color	values	in	each	range	to	one	particular	value.	
	
	
	
	
	
	

Example:	Simple	Posterize	
	
def simplePosterize(picture):
 newPic = picture.copy()

 for y in range(newPic.height):
 for x in range(newPic.width):
 rvalue, gvalue, bvalue = newPic.getpixel((x,y))

 # check red
 if (rvalue > 128):
 newR = 240
 else:
 newR = 50

 # check green
 if (gvalue > 128):
 newG = 240
 else:
 newG = 50

 # check blue
 if (bvalue > 128):
 newB = 240
 else:
 newB = 50

 # Set new color of pixel
 newPic.putpixel((x,y), (newR, newG, newB))

 # return the new image
 return newPic
	
	

								 	
	 Original	picture	 	 	 	 Simple	posterized	picture	

	
	
We	can	extend	this	posterize	example	by	choosing	to	have	more	than	two	choices	
for	red,	green,	and	blue.		To	do	this,	we	will	use	if-else	if-else	statements,	which	are	
abbreviated	as	elif	statements	in	Python.		We	have	a	more	general	posterize	
example:	
	
Example:	Posterize	
	
def posterize(picture):
 newPic = picture.copy()

 for y in range(newPic.height):
 for x in range(newPic.width):
 rvalue, gvalue, bvalue = newPic.getpixel((x,y))

 # check red
 if (rvalue < 64):
 newR = 31
 elif (rvalue > 63 and rvalue < 128):
 newR = 95
 elif (rvalue > 127 and rvalue < 192):
 newR = 191
 else:
 newR = 223

 # check green
 if (gvalue < 64):
 newG = 31
 elif (gvalue > 63 and gvalue < 128):
 newG = 95
 elif (gvalue > 127 and gvalue < 192):
 newG = 191
 else:
 newG = 223

 # check blue
 if (bvalue < 64):
 newB = 31
 elif (bvalue > 63 and bvalue < 128):
 newB = 95
 elif (bvalue > 127 and bvalue < 192):
 newB = 191
 else:
 newB = 223

 newPic.putpixel((x,y), (newR, newG, newB))
 return newPic
	
How	does	this	function	work?		Once	we	obtain	the	red,	green,	and	blue	values	for	a	
pixel,	we	check	the	red	values.		We	come	to	the	first	if-statement.		If	the	given	
condition	(rvalue	<	64)	is	true,	we	set	the	red	to	a	new	value	(31)	and	then	
execution	continues	to	the	if-statement	checking	the	green	values.		We	skip	the	
remaining	statements	in	that	block	of	code	dealing	with	red	values.		If	the	first	
condition	for	red	is	not	true,	we	would	check	the	second	condition	(rvalue	>	63	
and	rvalue	<	128).		If	it	is	true,	we	change	the	red	value	to	95	and	execution	skips	
to	the	first	if-statement	for	green	values.		If	it	is	not	true,	we	check	the	third	
condition.		If	it	is	true,	we	change	the	red	value	to	159.		If	it	is	not	true,	we	execute	
the	statement(s)	that	come	after	the	else.	
	
	
Exercise:	What	is	the	minimum	number	of	conditions	we	would	need	to	check	in	
the	posterize	example?		What	is	the	maximum	number	of	conditions	we	would	
need	to	check?	
	
	
Exercise:	What	is	the	difference	between	using	all	if-statements	in	the	following	
version	of	posterize	and	the	version	from	earlier	in	the	notes?	
	
def posterize2(picture):
 newPic = picture.copy()

 for y in range(newPic.height):
 for x in range(newPic.width):
 rvalue, gvalue, bvalue = newPic.getpixel((x,y))

 # check red
 if (rvalue < 64):
 newR = 31
 if (rvalue > 63 and rvalue < 128):
 newR = 95
 if (rvalue > 127 and rvalue < 192):
 newR = 191
 if (rvalue > 191 and rvalue < 256):
 newR = 223

 # check green
 if (gvalue < 64):
 newG = 31
 if (gvalue > 63 and gvalue < 128):
 newG = 95
 if (gvalue > 127 and gvalue < 192):

 newG = 191
 if (gvalue > 191 and gvalue < 256):
 newG = 223

 # check blue
 if (bvalue < 64):
 newB = 31
 if (bvalue > 63 and bvalue < 128):
 newB = 95
 if (bvalue > 127 and bvalue < 192):
 newB = 191
 if (bvalue > 191 and bvalue < 256):
 newB = 223

 # Set new color of pixel
 newPic.putpixel((x,y), (newR, newG, newB))

 # return the new image
 return newPic
	
	
Review:		
If-statements	have	the	following	syntax:	
	
if some condition:
					# do something here if the condition is true

	
	
If-else	statements	have	the	following	syntax:	
	
if some condition:
					# do something here if the condition is true
else:
 # do something else if the condition is not true

Elif	statements	have	the	following	syntax:	
	
if some condition:
					# do something here if the condition is true
elif some other condition:
 # do something else if the first condition is not true
 # and the second condition is true
elif yet another condition:
 # do if the first two conditions are not true but the

 # third condition is true
else:
 # do when none of the conditions are true
	
	
Note	that	there	may	be	any	number	of	elif	conditions.	
	
We	will	now	experiment	with	using	if-statements	in	the	next	activity.	
	
Activity:	Experimenting	with	Conditional	Statements	

